Problem 3) For an infinitely long, thin wire with no constraints at the far-away boundaries (located at $x = \pm \infty$), the eigen-solutions of the wave equation are $\exp[i(kx \pm \omega t)]$. Substitution into the (one-dimensional) wave equation shows that $\omega = kv$. The general solution is written as the sum of two superposition integrals, as follows:

$$z(x,t) = \int_{-\infty}^{\infty} Z^{(+)}(k) \exp[i(kx + \omega t)] dk + \int_{-\infty}^{\infty} Z^{(-)}(k) \exp[i(kx - \omega t)] dk.$$
 (1)

Defining the Fourier transforms of the initial conditions as F(k) and G(k), we will have

$$f(x) = \int_{-\infty}^{\infty} F(k) \exp(ikx) dk$$
, where $F(k) = (2\pi)^{-1} \int_{-\infty}^{\infty} f(x) \exp(-ikx) dx$. (2)

$$g(x) = \int_{-\infty}^{\infty} G(k) \exp(ikx) dk$$
, where $G(k) = (2\pi)^{-1} \int_{-\infty}^{\infty} g(x) \exp(-ikx) dx$. (3)

A comparison with Eq.(1) at t = 0 reveals that the following identities must be satisfied:

$$F(k) = Z^{(+)}(k) + Z^{(-)}(k). (4)$$

$$G(k) = i\omega Z^{(+)}(k) - i\omega Z^{(-)}(k).$$
 (5)

Solving the above equations for $Z^{(+)}$ and $Z^{(-)}$, we find

$$Z^{(\pm)}(k) = \frac{1}{2}F(k) \pm \frac{1}{2i\omega}G(k). \tag{6}$$

Substitution into Eq.(1) and the invocation of the identity $\omega = kv$ now yields

$$z(x,t) = \frac{1}{2}f(x+vt) + \frac{1}{2}f(x-vt) + \int_{-\infty}^{\infty} G(k)[\sin(kvt)/(kv)] \exp(ikx) dk.$$
 (7)

The last term in the above equation is the inverse Fourier transform of the product of G(k) and $\sin(kvt)/(kv)$. The inverse transforms of these functions are g(x) and $(\pi/v)\operatorname{rect}(x/2vt)$, respectively. The inverse Fourier integral in Eq.(7) may thus be written as the convolution between the individual inverse transforms, namely,

$$(2\pi)^{-1}g(x) * (\pi/\nu)\operatorname{rect}(x/2\nu t) = \frac{1}{2\nu} \int_{-\infty}^{\infty} g(x')\operatorname{rect}\left(\frac{x-x'}{2\nu t}\right) dx' = (1/2\nu) \int_{x-\nu t}^{x+\nu t} g(x') dx'.$$
 (8)

Substituting the above result into Eq.(7), we finally arrive at the desired D'Alembert formula,

$$z(x,t) = \frac{1}{2}f(x+vt) + \frac{1}{2}f(x-vt) + (\frac{1}{2}v)\int_{x-vt}^{x+vt} g(x')dx'.$$
 (9)

Digression: The following formulas have been used in the above derivations:

1)
$$\mathcal{F}\{\operatorname{rect}(x/2vt)\} = (2\pi)^{-1} \int_{-vt}^{vt} \exp(-ikx) \, dx = \frac{\exp(-ikvt) - \exp(ikvt)}{-i2\pi k} = (v/\pi) \sin(kvt)/(kv). \tag{10}$$

2)
$$\int_{-\infty}^{\infty} G(k)H(k) \exp(ikx) dk = \int_{-\infty}^{\infty} \{(2\pi)^{-1} \int_{-\infty}^{\infty} g(x') \exp(-ikx') dx'\} H(k) \exp(ikx) dk$$
$$= (2\pi)^{-1} \int_{-\infty}^{\infty} g(x') \{ \int_{-\infty}^{\infty} H(k) \exp[ik(x-x')] dk \} dx'$$
$$= (2\pi)^{-1} \int_{-\infty}^{\infty} g(x') h(x-x') dx' = (2\pi)^{-1} g(x) * h(x). \tag{11}$$