Problem 3) For an infinitely long, thin wire with no constraints at the far-away boundaries
(located at x = +00), the eigen-solutions of the wave equation are exp[i(kx + wt)]. Substitution
into the (one-dimensional) wave equation shows that w = kv. The general solution is written as
the sum of two superposition integrals, as follows:

2et) = [ 2D k) expliCkx + wt)] dk + [ 2O (k) expli(kx — wt)] dk. (1)
Defining the Fourier transforms of the initial conditions as F (k) and G (k), we will have
flx) = f_oooo F(k) exp(ikx) dk, where F(k) = (2m)~! ffooof(x) exp(—ikx) dx. (2)
glx) = fjooo G (k) exp(ikx) dk, where G(k) = (2m)~! f_oooo g(x) exp(—ikx) dx. 3)
A comparison with Eq.(1) at ¢ = 0 reveals that the following identities must be satisfied:
F(k) =ZM (k) + 2 (k). (4)
G(k) = iwZ™M (k) —iwZ (k). (5)
Solving the above equations for Z*) and Z(7), we find
ZB (k) = 2F () + 5= G (k). (6)
Substitution into Eq.(1) and the invocation of the identity w = kv now yields
z(x,t) = Yof (x + vt) + Yof (x — vt) + fjooo G (k)[sin(kvt) /(kv)] exp(ikx) dk. (7)

The last term in the above equation is the inverse Fourier transform of the product of G (k)
and sin(kvt)/(kv). The inverse transforms of these functions are g(x) and (w/v)rect(x/2vt),
respectively. The inverse Fourier integral in Eq.(7) may thus be written as the convolution
between the individual inverse transforms, namely,

2m) tg(x) * (m/v)rect(x/2vt) = i[m g(xrect (xz_—vtx’) dx' = (1/2v) fxx_t;tg(x’)dx’. (8)

Substituting the above result into Eq.(7), we finally arrive at the desired D’ Alembert formula,

x+vt

z(x,t) = Yf (x + vt) + Yf (x — vt) + (1/2v) fx_vt g(x"Hdx'. 9)
Digression: The following formulas have been used in the above derivations:
1) Flrect(x/2vt)} = (2m) ™" [*7, exp(—ikx) dx = SEEEO =MD _ (/7 sin(kvt) / (kv). (10)
2) J= Gk H (k) exp(ikx) dk = j_""m{(z;r)-l I g(x") exp(—ikx") dx'}H (k) exp(ikx) dk

= @m) [ gGH{S, Hk) explik(x — x")] dk}dx’

= 2m) ™ [7 g(xh(x — x)dx' = 2m) " g(x) * h(x). (11




